BBRF103_2 PCB adds a switchable LNA power supply through the antenna cable

I tested it with an Outernet L-band ceramic patch antenna.  This antenna requires  power and can be connected to BBRF103_2 PCB. The antenna onboard filter helps to reduce problems from interfering signals and restricts reception to 1525 - 1559 MHz.

The antenna is a 12 by 12 cm square PCB.  I placed it into a plastic radome ( an empty IKEA FIXA series DIY kit ).



A picture of the installed radome.


Some screenshots of the band L:


Reception of Inmarsat C  with  WinSTD-C program.



Ten MHz down there are many other satellite signals.  The gap in the spectrogram shows the BBRF103 noise when the antenna power is switched off;  two spurious signals are visible on the right.

BBRF103_2 PCB notes

ADC:  I mounted the BBRF103_2 prototype with a LTC2208 ADC instead of LTC2217. I wanted to check compatibility and I had not any other LTC2217 sample. The LTC2208 is a little noiser than LTC2217 by some 2 dB.  The LTC2208 draws  some mA more current.

Antenna power: The  scheme uses 2N3906,2N3904 : Q2,Q3,Q4,Q5. The pcb footprint is wrong. Mount them upside down on the pc board.

I mounted R42,R43,R44 = 10 Ohm,  it increases the output current. 

R820T2:  I added some bypass capacitors to the VCT line on the top layer. 

Temperature: I made some measure of the temperature of R820T2 and LTC2208 with a small copper radiator.


The temperature of the ADC with a small copper radiator reaches 67 ° C while the R820T2 with the radiator reaches 45 ° C.

Preview: I will use MAX4995 50mA to 600mA Programmable Current-Limit Switch to control the LNA current in a new pcb's revision and some heat radiators will be added to ADC and RT820T2...